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ABSTRACT  

Early prediction of COVID-19 in-hospital mortality relies usually on patients’ preexisting comorbidities and is rarely 

reproducible in independent cohorts. We wanted to compare the role of routinely measured biomarkers of immunity, 

inflammation, and cellular damage with preexisting comorbidities in eight different machine-learning models to predict 

mortality, and evaluate their performance in an independent population.  We recruited and followed-up consecutive adult 

patients with SARS-Cov-2 infection in two different Italian hospitals. We predicted 60-day mortality in one cohort 

(development dataset, n=299 patients, of which 80% was allocated to the development dataset and 20% to the training set) 

and retested the models in the second cohort (external validation dataset, n=402).  

Demographic, clinical, and laboratory features at admission, treatments and disease outcomes were significantly different 

between the two cohorts. Notably, significant differences were observed for %lymphocytes (p<0.05), international-

normalized-ratio (p<0.01), platelets, alanine-aminotransferase, creatinine (all p<0.001). The primary outcome (60-day 

mortality) was 29.10% (n=87) in the development dataset, and 39.55% (n=159) in the external validation dataset. The 

performance of the 8 tested models on the external validation dataset were similar to that of the holdout test dataset, 

indicating that the models capture the key predictors of mortality. The shap analysis in both datasets showed that age, 

immune features (%lymphocytes, platelets) and LDH substantially impacted on all models’ predictions, while creatinine 

and CRP varied among the different models. The model with the better performance was model 8 (60-day mortality 

AUROC 0.83±0.06 in holdout test set, 0.79±0.02 in external validation dataset). The features that had the greatest impact on 

this model’s prediction were age, LDH, platelets, and %lymphocytes, more than comorbidities or inflammation markers, 

and these findings were highly consistent in both datasets, likely reflecting the virus effect at the very beginning of the 

disease.   

 

 

1. INTRODUCTION  
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The outbreaks of the Severe acute respiratory syndrome coronavirus 2  (SARS-CoV-2) first detected in Wuhan, 

China, in December 2019, evolved into a pandemic in the following weeks, raising concerns all over the world  (Huang et 

al., 2020a). The infection can lead to coronavirus disease 2019  (COVID-19), which is characterized by a high rate of 

hospitalization, respiratory failure, and ultimately death  (W. Guan et al., 2020; Onder et al., 2020; Zhou et al., 2020). To 

improve the recognition of the patients at higher risk of deterioration and death, efforts were undertaken to early predict the 

outcomes, ideally at the point of hospital admission.   

Numerous articles on large cohorts of hospitalized patients affected by COVID-19 have been published so far  

(Geleris et al., 2020; Grasselli et al., 2020; W. Guan et al., 2020; Hamer et al., 2020; Huang et al., 2020b; Richardson et al., 

2020; D. Wang et al., 2020; Zhou et al., 2020). Coexisting conditions, such as diabetes, hypertension, malignancy, chronic 

obstructive pulmonary disease  (COPD), obesity and older age are risk factors for severe disease and poor outcome in 

hospitalized patients (Chow et al., 2020; Docherty et al., 2020; Du et al., 2020; Wei-jie Guan et al., 2020; Huang et al., 

2020a; Petrilli et al., 2020; Simonnet et al., 2020; Zhang et al., 2020; Zhou et al., 2020). Along with these clinical 

predictors, several immune and inflammatory markers predicting worst outcomes have been identified. Patients with severe 

COVID-19 develop life-threatening hyperinflammatory response to the virus, which is characterized by a high circulating 

levels of C-reactive protein  (CRP) and interleukin  (IL)-1β, IL-6, IL-18, tumor-necrosis factor, granulocyte-macrophage 

colony stimulating factor and interferon-γ  (Mehta et al., 2020) (Ruan et al., 2020). This response is detrimental and has 

been shown to anticipate the intubation and mortality. On the other hand, more severe forms of COVID-19 were associated 

with peripheral lymphocyte subset alteration, and patients with higher lymphocyte counts were less likely to have cytokine 

storm syndrome and may experience more harm than benefit when receiving corticosteroids  (F. Wang et al., 2020) (Lu et 

al., 2021). Among others, lactic dehydrogenase  (LDH), lymphocyte and CRP have been shown to have a role in the 

stratification of COVID-19 hospitalized patient outcomes  (Brinati et al., 2020; Yan et al., 2020). 

With the attempt to offer incremental value for patient stratification to these univariable predictors, machine 

learning  (ML) models were used to achieve a more accurate outcome prediction to support decision making when dealing 

with critically ill COVID-19 patients  (Brinati et al., 2020; Yan et al., 2020). However, these ML models showed the 

challenges of the prediction of outcomes, since in most cases the reported performance was found to be overestimated in the 

tested population, when the model was validated in an external one  (Gupta et al., 2020). 

In this study, we aimed to compare the role of routinely measured biomarkers of immunity, inflammation, and 

organ damage at hospital admission with preexisting comorbidities in eight different machine learning models to predict 60-
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day mortality. Importantly, to assess the generalizability our findings, we aimed to evaluate the models’ performance in an 

unrelated, external population from a different hospital.  

 

 

2. MATERIAL AND METHODS 

 

2.1 Setting and data sources 

We conducted an observational retrospective study collecting 2 independent cohorts, one from Poliambulanza 

Hospital of Brescia, Italy, referred as the “Brescia cohort”, and one from Policlinico San Marco, Hospital of Zingonia, 

Bergamo, Italy, referred as the “Zingonia cohort”. Study participants were consecutive adult (≥18 years old) patients with 

documented COVID 19 infection  (i.e., tested by reverse-transcriptase-polymerase-chain-reaction  (RT-PCR) assay for 

SARS-CoV-2) at admission in the internal medicine units, from March 1st to April 1th 2020. Follow-up continued until death 

or May 31st, 2020. The electronic medical records of the patients recruited were accessed by the respective providers and 

data were manually abstracted, allowing a detailed case ascertainment.  

The study is reported in accordance with transparent reporting of a multivariable prediction model for individual 

prognosis or diagnosis  (TRIPOD) guidance for external validation studies  (Collins et al., 2015). This study was conducted 

in compliance with the Good Clinical Practice protocol and the Declaration of Helsinki principles and was approved by the 

local institutional review board. 

 

2.2 Case ascertainment and variable assessed 

Laboratory exams and clinical data were withdrawn and collected at day 1 of patient admission (baseline). 

Treatment and outcome data were collected during the follow up, from day 1 forward. Severe patients that at admission 

which were deemed to be hospitalized directly in ICU were not included. Patients with clear evidence of bacterial 

pneumonia  (i.e. clear imaging signs of bacterial pneumonia according to the radiological report) were also excluded.  

Jo
urn

al 
Pre-

pro
of



6 
 

Patients were treated for COVID-19 according medical judgment, following slightly different protocol in the two 

hospital. In the Poliambulanza hospital of Brescia, treatment option included hydroxychloroquine (HCQ) 200 mg/day; oral 

prednisolone or equivalents: 5-25 mg/day. Antiviral therapy  (oral Lopinavir/ritonavir, 400 mg/100 mg 2 times/day) were 

available, and biologic therapy  (subcutaneous tocilizumab, 162 mg single shot, eventually repeated after 12 hours if no 

response were observed). In the Zingonia hospital, antiviral and biologic therapy were not available, while HCQ and 

Prednisone were variably used.  Both structures used antibiotics, in the majority of cases azithromycin 500 mg/day or oral 

cefixime: 400 mg/day. In general, patients started with azithromycin with or without HCQ, and cefixime was added after 5 

days if no improvement was seen, in case of macrolide allergy or in addition to previous treatments in patients with age ≥65 

or ≥1 comorbidities. Prednisolone and HCQ were added according to clinical judgment. Low-flow O2 therapy were 

prescribed to patients with oxygen saturation <93% at resting in ambient air documented by pulse oximeter  (<88% for 

patient affected by COPD) or heart rate >22 beats per minute. Data on patients’ demographic, baseline comorbidities, 

presenting symptoms, oxygen saturation in ambient air at presentation, historical and current medication list, low-flow O2 

prescription by the general practitioners, inpatient hospitalization, invasive and non-invasive ventilator use data, and death 

were collected.  

 

2.3 Variables of interest and outcome 

Categorical and continuous variables already shown to have a prognostic value for COVID-19 patients were 

collected. Blood hypertension  (HTN), smoking  (current or former) ≥10 pack/year, chronic obstructive pulmonary disease  

(COPD), cardiovascular diseases  (coronary artery disease, heart failure, atrial fibrillation), diabetes, and chronic kidney 

disease  (CKD) ≥ grade III  (eGFR<60ml/min/1.73 m2), were identified and recorded as present or absent according to chart 

review. Age and sex were also included. The most recent patient weight and height, during the 12 months preceding the 

admission to the hospital were collected, and BMI was calculated; following the World Health Organization definitions 

(World Health Organization, n.d.) , obesity was defined as having a BMI ≥ 30kg/m2 (World Health Organization, n.d.). A 

routine panel of laboratory exams were performed at patients’ admission, including complete blood cell count, LDH, CRP, 

serum creatinine  (sCr), aspartate aminotransferase  (AST), alanine aminotransferase  (ALT), and international normalized 

ratio  (INR).  
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The eight numerical variables included in the “Numerical” models were: age at diagnosis, lymphocytes percentage, 

platelets count, CRP, LDH, ALT, sCr, INR. In the “Numerical and Categorical” models the following eight categorical 

variables were added to the previous numerical ones : sex, obesity, diabetes, HTN, COPD, CKD, cardiovascular disease, 

smoking. 

The primary endpoint of this study was 60-day mortality. The time from index date (hospital admission) to death 

was also collected. Other outcomes collected were the need of O2 therapy, the need of non-invasive ventilation (NIV), the 

need of intubation in intensive care unit (ICU) during the observation period. 

 

2.4 Data curation and statistical Analysis  

Categorical data were summarized as percentages, significant differences between the 2 independent cohorts or 

associations of outcomes with clinical features were analyzed using the X2 test or Fisher exact tests, where appropriate. 

Continuous variables were presented as mean±standard deviation (SD) or median and interquartile range  (IQR), depending 

on normality demonstrated by Kolmogorov–Smirnov test. Comparisons were performed with Student’s t-test for 

independent samples  (2-tailed). Kaplan-Meier survival plots were constructed and the survival curves for groups were 

compared using a log-rank test. Patients without a primary endpoint event had their data censored on May 31st, 2020. 

All the analyses were performed using JMP Pro package  (SAS Institute Inc., Cary, North Carolina) and SAS 

System for Windows, version 9.4  (SAS Institute), and scikit-learn  (Pedregosa et al., 2011). A p-value of <0.05 was 

considered statistically significant for all the analysis. 

 All data processing was performed using scikit-learn  (Pedregosa et al., 2011). In case of missing data, missing 

values were imputed using the Iterative Imputer functions, that models each feature with missing values as a function of 

other features in a round-robin fashion  (Buuren and Oudshoorn, 2011). The Brescia cohort was randomly divided into a 

training and a test set: 80% of the Brescia cohort served as training set and 20% as test set. All the data from the Zingonia 

cohort served as the external validation dataset. After the train/test split, we normalized the numerical features of the 

training data using the Standard Scaler function, that standardize each feature by removing the mean and scaling to unit 

variance; for categorical variables, we performed one-hot encoding using the One Hot Encoder function. We applied the 

transformations learned on the training set on the two test sets  (Brescia and Zingonia).  
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2.5 ML Models: development, training, evaluation and interpretability 

We evaluated four machine learning classifiers: 

- Decision tree  (DT)  (Safavian and Landgrebe, 1991) 

- Random forest  (RF)  (Ho, 1998) 

- Gradient boosting  (GBOOST)  (Friedman, 2001) 

- Support vector machine  (SVM)  (Williams, 2003) 

All classifiers were developed in Python using the scikit-learn library  (Pedregosa et al., 2011). We trained each of the four 

classifiers using only numerical features, or a combination of numerical and categorical features, for a total of 8 models. 

 Prior its training, each classifier required the definition of a set of parameters that will drive the training process  

(hyperparameters). To find the best combination of hyperparameters for each model, we performed a grid search analysis 

using a nested five-fold cross-validation on the training set, using the mean F1-score obtained in the five folds as the metric 

to select the best performing hyperparameters; we then used the selected parameters to re-train each model from scratch on 

the whole training set. Given the imbalance between the two classes being predicted, we also tested different combination of 

class weights to help the models focusing on the minority class. 

 After cross-validation, a total of 8 best-performing models  (two for each classifier) were selected and used to 

perform predictions on both test sets  (Supplementary Figure 1). We evaluated the models using precision, recall, F1-

score, and AUROC. These were defined as follow: 

- Precision = True Positive /  (True Positive + False Positive) 

- Recall = True Positive /  (True Positive + False Negative) 

- F1 Score = 2 * [ (Precision * Recall) /  (Precision + Recall)]  

We used the python package shap  (Lundberg et al., 2018) to interpret the output of our models, and have a sense of the 

features that most influence the models’ predictions. Briefly, SHAP  (SHapley Additive exPlanations) uses classic Shapley 

values from game theory and their extension to connect optimal credit allocation with local explanation and assigns each 

feature an importance value for a particular prediction, allowing interpreting the predictions of complex models  (Lanctot et 
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al., 2017). We used the shape package to obtain the summary plots that show which features contributed the most to the 

model’s predictions. We performed this detailed analysis on the model that showed the best performance on the external 

validation set. 
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3. RESULTS 

3.1 Demographic, clinical, and laboratory features at admission, treatments and outcomes were 

significantly different in the two datasets 

A total of 302 and 411 patients were included from the Brescia and Zingonia cohorts, respectively. We excluded 3 

and 9 patients respectively because they did not meet the inclusion criteria (i.e., evidence of bacterial pneumonia). A total of 

299 and 402 patients, respectively, were therefore included in the analysis. For the model development, we allocated 80% of 

the patients (n=239) of the Brescia cohort as training set and 20% of the patients (n=60) as test set. The complete Zingonia 

cohort (402 patients) was used as the external validation dataset. The study design is summarized in Supplementary Figure 

1. 

Baseline demographic and clinical features are described in Table 1. The frequency of obesity, smoking and the 

CKD ≥III grade were higher in the development dataset (<0.0001). At admission, the proportions of patients with 

fever>37.5°C and subjective dyspnea at resting were significantly lower in the development dataset, while the PaO2/FiO2 

ratio were significantly higher in the validation dataset. Significant difference between the two datasets were observed for % 

of lymphocytes (p<0.05), platelets count  (p<0.0001), alanine aminotransferase  (p<0. 0001), international normalized ratio  

(p<0.01), creatinine  (p<0.001), but not for white blood cell count, C-reactive protein, lactic dehydrogenase  (LDH), 

aspartate amino transferase  (p>0.05).  Treatment approach was significantly different as well: the frequency of antibiotics, 

HCQ and Prednisone was significantly lower in the validation cohort, and antiviral and biologic therapy was never used to 

treat these patients. As a consequence, the proportion of patients requiring NIV and the proportions of deaths were 

significantly higher in the validation cohort compared to the development one.  

 

3.2 Baseline clinical and laboratory features in survivors versus non-survivors were similarly 

distributed in the two datasets 

The features included in the models are represented by outcomes for each dataset in Figure 1. For clinical 

variables, age of the patients and the proportion of HTN, CVD, diabetes, and CKD were significantly higher in those that 

died during the 60-day observation period in both the datasets (Figure 1A for the development dataset, Figure 1B for the 

Jo
urn

al 
Pre-

pro
of



11 
 

validation dataset). Similarly, lymphocyte percentage, CRP, LDH and sCr levels were higher in those patients that met the 

primary outcome (Figure 1C for the development dataset, Figure 1D for the validation dataset). Data imputation was very 

low (<0.01% in total, single variable ranging from 0 to 0.04%). 

 

3.3 Model training and evaluation in the development dataset and performance in the 

external validation set 

The 8 models were developed and were evaluated using F1-score and AUROC (Supplementary Table 1). When 

predicting the 60-days mortality after hospitalization in the test set, the performance was heterogeneous among the different 

models (Supplementary Table 2). Model 3 (GBOOST numerical) achieved the highest mean F1-score (weighted avg 0.83) 

followed by Model 7 (SVM, numerical; weighted avg 0.79), Model 8  (SVM numerical and categorical, weighted avg 0.78) 

and Model 5  (RF Numerical, weighted avg 0.78), Model 4  (GBOOST Numerical and Categorical, weighted avg 0.74), 

Model 2  (DT Numerical and Categorical, weighted avg 0.73) and Model 6  (RF Numerical and Categorical, weighted avg 

0.73). Model 1 performed badly (DT Numerical, weighted avg 0.49). 

Compared to the internal test set, the mean F1 scores on the external validation set were lower for all the models 

(Table 2). Model 8 (SVM numerical and categorical) achieved the highest mean F1 score (weighted avg 0.72) followed by 

Model 6 (RF categorical, weighted avg 0.71) and Model 7 (SVM, numerical; weighted avg 0.70). All the other Models had 

a mean F1 score between 0.60 and 0.67, except Model 1, which performed worse (DT Numerical, weighted avg 0.49). 

Overall, although less accurate, the performance of the 8 tested models on the external validation dataset were similar to that 

of the holdout test dataset, indicating that the models capture the key predictors of patient mortality. 

 

3.4 Immune and laboratory features at hospital admission impacted on mortality prediction 

more than concomitant clinical comorbidities or hyperinflammation 

To make these ML models explainable in terms of the weight of each individual feature tested (i.e. age, sex, patient 

preexisting comorbidities, immune e laboratory parameters at hospital admission) for patient survival, we performed the 

shap analysis on all the 8 models in both the development test set and the external validation dataset (Supplementary 
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Figure 2 and 3). The shap analysis automatically orders the variables used based on the impact of each variable on the 

model output. In all models and of both the datasets, immune features  (%lymphocytes, platelets), cellular damage  (LDH in 

particular) substantially impacted on the models since were constantly among the first positions the ranking. In all the 

models but one, age impacted significantly (first in the ranking), while the effect of sCr and CRP varied among the different 

models. Beside age, the weight of the preexisting comorbidities was substantially lower compared to laboratory features. 

Given its better performance on the external validation set, we focused our further evaluations on Model 8, a SVM 

classifier that uses both numerical and categorical variables; the hyperparameters for this model are listed in the 

Supplementary Table 3. This model had an AUROC for 60-day mortality of 0.83±0.06 in the holdout test set, and an 

AUROC of 0.79±0.02 in the external validation dataset (Supplementary Figure 3).  When considering the contribution of 

each of the features in this model, in both the development test set and the external validation dataset (Figure 2A and 2B, 

respectively), age at admission had the greatest impact on the predictions, with older age driving the predictions towards 

deaths and younger age driving the predictions towards survival. This was followed by LDH (with higher levels driving 

prediction towards death), platelets count and %lymphocytes (with lower levels driving prediction towards death). The 

weight of these variables on the model predictions was highly consistent in both the datasets. Serum creatinine had also a 

significant weight in both dataset (with higher levels driving prediction towards death), while CRP did only the external 

validation dataset.  

 

4. DISCUSSION 

Early prediction of COVID-19 in-hospital mortality relies usually on preexisting comorbidities and is rarely 

reproducible in independent cohorts of hospitalized patients. Our findings showed that immune and cellular damage 

markers at hospital admission impacted on mortality prediction substantially more than the presence of concomitant clinical 

comorbidities or systemic inflammation features (such as high CRP), and these results were reproducible in an independent 

population with different baseline features and outcomes. Numerous articles on hospitalized patients affected by COVID-19 

showed that diabetes, hypertension, malignancy, COPD, obesity and older age are risk factors for severe disease and poor 

outcome in hospitalized patients (Chow et al., 2020; Docherty et al., 2020; Du et al., 2020; Wei-jie Guan et al., 2020; Huang 

et al., 2020a; Petrilli et al., 2020; Simonnet et al., 2020; Zhang et al., 2020; Zhou et al., 2020), while the role of immune and 
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other laboratory parameters in mortality prediction were not reported so often. Patient with severe COVID-19 develop life-

threatening hyperinflammatory response to the virus, which is characterized by a high circulating levels of CRP and IL-1β, 

IL-6, IL-18, tumor-necrosis factor, granulocyte-macrophage colony stimulating factor and interferon-γ. This response is 

detrimental and has been shown to anticipate the intubation and mortality  (Mehta et al., 2020) (Ruan et al., 2020). 

However, the attempt of blocking hyperinflammation with available agents inhibiting IL-6  (tocilizumab, sarilumab) and IL-

1 (anakinra) has led to conflicting and ultimately marginal results in both clinical trials and real word settings  

(Campochiaro et al., 2020; Cavalli et al., 2020; Della-Torre et al., 2020; Guaraldi et al., 2020; Salvarani et al., 2021; Stone 

et al., 2017), suggesting that these agents may have a limited role in controlling the disease. On the other hand, more severe 

forms of COVID-19 were associated with peripheral lymphocyte subset alteration, and patients with higher lymphocyte 

counts were less likely to have cytokine storm syndrome and may experience more harm than benefit when receiving 

corticosteroids  (F. Wang et al., 2020) (Lu et al., 2021). Consistently, CD8+ T cells tended to be an independent predictor 

for COVID-19 severity and treatment efficacy  (F. Wang et al., 2020). In other studies, markers of cellular damage and in 

particular LDH has been shown to have a role in the stratification of COVID-19 hospitalized patient outcomes  (Brinati et 

al., 2020; Yan et al., 2020). In our study, beside age, immune and laboratory features at hospital admission impacted on 

mortality prediction substantially more than the presence of concomitant clinical comorbidities or hyperinflammation. 

Taken altogether, we can speculate that this probably reflects the effect of the virus at the very beginning of disease onset, 

while the prediction of the risk may change dynamically during the disease and hospitalization course, i.e. as in ICU cohorts 

in which comorbidities may impact much more on patient survival or life-threatening hyperinflammatory response to the 

virus is usually reflected by higher circulating levels of CRP, IL-1β, IL-6, IL-18, and interferon-γ. Of course, other factors 

may be involved, as for example the genetic background of the patients or the virus genetic variant affecting patients.  

In a rapidly evolving field like the COVID-19 research, discoveries accumulate rapidly. The strength of our approach is that 

it allows to interpret the clinical and laboratory variables imputed to perform a prediction, possibly favoring the selection of 

biomarker candidates for prospective trials. From this perspective, these models showed their potential as discovery tools 

rather than clinical tools, and their interpretable features makes them great candidates for this application. One thing to 

consider is the feasibility of incorporating the recent discoveries in a model like ours, that has built by imputing data from 

clinical routine. Recently, new potential immunologic biomarkers with prognostic value for COVID-19, such as mucosal-

associated invariant T (MAIT) cells (Flament et al., 2021) or circulating NKT cells (Kreutmair et al., 2021), have been 

discovered. The methodology we used, i.e. the ML modelling, can be easily applied to these variables, contributing to reveal 
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the immune dysregulation occurring during COVID-19 infection and with potential prediction of the outcome. The 

limitation of these ML modelling is that large numbers of patients are usually required to avoid overfitting. 

The early prediction of the prognosis of COVID-19 patients is of global interest. Much effort has been undertaken 

to understand which patients are at higher risk of deaths, in order to intensify treatment and care in these individuals. The 

growing body of literature offers many examples of studies aiming to stratify COVID-19 patients for early mortality 

prediction, by means of ML algorisms (Brinati et al., 2020; Gupta et al., 2020; Yan et al., 2020) or more conventional 

regression models  (Chow et al., 2020; Docherty et al., 2020; Du et al., 2020; Wei-jie Guan et al., 2020; Huang et al., 2020a; 

Petrilli et al., 2020; Simonnet et al., 2020; Zhang et al., 2020; Zhou et al., 2020). Since none of the clinical or laboratory 

variables taken singularly was able to indisputably stratify the outcome of these patients at admission, several ML models 

were published. ML models have shown a great potential in predicting COVID-19 outcome and perform COVID-19 

diagnosis (Chow et al., 2020; Docherty et al., 2020; Du et al., 2020; Geleris et al., 2020; Grasselli et al., 2020; W. Guan et 

al., 2020; Wei-jie Guan et al., 2020; Hamer et al., 2020; Huang et al., 2020a, 2020b; Petrilli et al., 2020; Richardson et al., 

2020; Simonnet et al., 2020; D. Wang et al., 2020; Zhang et al., 2020; Zhou et al., 2020). A common limitation of ML 

models is that they might overfit to the population used to develop them, resulting in poorer performance when tested in 

different ones. The issue of overfitting has recently emerged also for COVID-19, since 22 published models, specifically 

developed for COVID-19 or routinely used in the clinical activity to assess the severity of pneumonia or general status  (e.g. 

CURB65, NEWS2, etc.) performed sub-optimally when validated in an external cohorts  (Gupta et al., 2020). It should also 

be noticed that most of these models were developed in a single center and not tested in an external population during the 

publication process, and that AUROC was used to assess their net benefit, both potentially leading to imprecision. Our work 

is unique since we had the opportunity work on 2 independent datasets, one used for development and one for external 

validation. This conferred robustness to our analysis. We developed and validated 8 models to predict 60-day mortality in 

two independent cohorts of hospitalized patients with COVID-19. We evaluated our models using the F1 score, a metric 

that considers both false positives and false negatives into account, and it is more accurate in the case of an uneven class 

distribution of the outcome, as in our case. Model 8  (SVM Numerical and Categorical) showed the best F-1 score on the 

external validation dataset, indicating the best performance, which corresponded to an AUROC of 0.79. To ensure 

comparability with previous ML models  (Gupta et al., 2020), we calculated AUROC for Model 8 in the external validation 

population. The average of AUROCs were 0.60 of all the previous models when assessing mortality, with the highest being 

0.76 for the models REMS and Xie  (Gupta et al., 2020). Of note, the reason why nobody so far obtained a valid and 

reproducible prediction might be that the conventional parameters used for the modeling are not sufficient, and maybe 
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more-disease specific features are needed to predict mortality, and this might be particularly true for patient preexisting 

comorbidities.  Overall, even if the ultimate goal of ML modelling is the development of a risk prediction model at an 

individual patient level, collectively taken, most of these models failed the predictions in clinical practice. Although ML 

tools developed to assist in the management of COVID-19 have demonstrated high potential, the great majority of them (if 

not all) are not routinely used to support clinical decision making. The reasons might be many, i.e. the incapacity of the 

models to account for the changing nature of the predicted outcomes, or some of the input features do not have the 

anticipated impact on the predictions because rarer or less discriminating than expected. In this sense, we are aware of these 

limitations of ML, and to mitigate these potential issues we tested our models in a second, independent cohort of patients. 

Altogether, we believe that ML models should be considered research tools rather than tools ready to be deployed in clinical 

practice. The best use of these models is probably to drive research questions, expand our knowledge of the disease, and to 

identify potential biomarkers by focusing on the variables that have shown to be the most important in the models’ 

predictions, to be tested in prospective studies. It is important to underline that this is possible only thanks to the 

complementary interpretability tools, that serves as agents that we can use to debug our models. 

Finally, ML models tend to suffer whenever there is a change in either the input data or the population (i.e. population 

specific characteristics, like age and other demographics, comorbidities, etc.), but also changes in clinical practice, for 

example with the introduction of new drugs or therapeutic schemes. A possible application of our approach is that, given the 

interpretability of our models, we could test how they “react” to a change in clinical practice (e.g., will the same variables 

be important for prognosis?). In conclusion, while we wouldn’t advise introducing these models in the clinical practice yet, 

they could be used experimentally to predict how patients respond to new therapies and, in general, to the improvement in 

the clinical management of these patients. 

This study has some strengths and limitations. Compared to other previous paper, our work is characterized by a 

very low percentage of data imputation, a clear interpretability and an independent external validation dataset which 

increases the methodological rigor of our study and allows to test the reproducibility of the models. Most if not all the 

previous cohorts used for modeling were single-center, retrospective cohorts. Second, we used the nested cross validation 

and used mean F1 score instead of AUROC to select the models, contributing to the methodological rigor our analyses. A 

weakness of the current study is the observational retrospective design and the extraction of data from non-standardized 

medical records cannot completely exclude classification error. In addition, even if missing data were minimal  (< 5%), 

multiple imputation was performed. Laboratory data were collected only at baseline, and not longitudinal data were 
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retrieved, likely reducing the performance of the tested models. However, most prognostic scores are intended to predict 

outcomes at the point of hospital admission.  

In conclusion, beside age, in our ML models immune and laboratory features at hospital admission impacted on 

mortality prediction substantially more than the presence of concomitant clinical comorbidities or the presence of a systemic 

inflammatory status, and these findings were highly reproducible in independent populations. We can speculate that this 

probably reflects the effect of the virus at the very beginning of disease onset, while the prediction of the risk may change 

dynamically during the disease course. Future clinical and basic science studies are needed to have a better understanding of 

the immune and cellular perturbations that occurs during COVID-19, which may help to develop reliable and reproducible 

prognostic models for COVID-19. 
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FIGURE LEGENDS. 

Figure 1. Clinical and laboratory features of the development dataset  (A an C, in the blue 

panels) and of the validation dataset  (B and D, in the white panels) by outcomes. * <0.05, ** 

<0.01, ***<0.001.  

Figure 2. The impact of the input features on predictions. The shap analysis on the model with 

the best precision  (Model 8), in the development test set  (A) and the external validation dataset  

(B). The model includes both continuous and binary input features. Continuous features vary 

from low to high values, whereas binary features are either present or absent. Each dot 

represents the impact of a feature on the mortality prediction for one patient at entrance. The 

color indicates the level of contribution of each variable  (with red indicating a higher impact on 

the prediction) and the direction the prediction towards death  (right) or survival  (left).  

 

SUPPLEMENTARY FIGURE LEGENDS. 

Supplementary Figure 1. Study overview and design. 

Supplementary Figure 2. Model 8 (SVM Numerical and Categorical). The area under the ROC 

curve (AUROC).  

Supplementary Figure 3. The shap analysis on all the 8 models in the development test set.  

Supplementary Figure 4. The shap analysis on all the 8 models in the external validation dataset. 
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TABLES 

Table 1. Baseline demographics, comorbidities, clinical features at presentation, treatments and outcomes 

of hospitalized patients with COVID-19 in the development dataset and external validation dataset. The 

variables used as input variables of the models are marked as *.  Comparisons were performed with either  

X2 test or Fisher exact tests for categorical variables, and Student’s t-test for continuous variables. 

Characteristics Development 

dataset  

 

External validation 

dataset 

p value 

N. 299 402  

Demographics    

   Age at diagnosis, *mean  (±SD) 68.79  (11.65) 70.21  (13.17) 0.1384 

   Male sex,* %  (number)  69.57%  (208) 67.41%  (271) 0.5446 

   Obesity,* BMI≥30kg/m2, %  (number) 19.40%  (58) 5.22%  (21) <.0001 

   Ethnicity, white,%  (number) 99.33%  (297) 100%  (402) 0.1816 

   Smoking,*  (≥10 pack/year), current or former, %  

(number) 
15.39%  (46) 

3.48%  (14) 
<.0001 

Comorbidities    

   Diabetes,*%  (number)  
19.39%  (58)  19.90%  (80) 

0.8686 

   HTN,*%  (number) 53.51%  (160) 46.77%  (188) 0.0773 

   Cardiovascular Diseases,* %  (number) 28.09%  (84) 24.13%  (97) 0.2356 

   CKD ≥ stage III,* %  (number) 36.12%  (108) 7.46%  (30) <.0001 

   COPD,* %  (number) 6.35%  (19) 9.70  (39) 0.1116 
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   Cancer  (active or < 5 years), %  (number) 5.69%  (17) 6.22%  (25) 0.7686 

   Previous stroke,%  (number) 3.34%  (10) 0.50%  (2) 0.0041 

Clinical presentation     

   Fever, temperature>37.5°C,%  (number) 
85.62%  (256) 

98.01%  (394) 
<.0001 

   Dry cough,%  (number) 51.51%  (154) NA - 

   Dyspnea at resting, %  (number) 50.17%  (150) 96.52%  (388) <.0001 

   Myalgias,  %  (number) NA 95.27%  (383) - 

   Gastrointestinal symptoms, %  (number)  6.02%  (18) 4.48%  (18) 0.3602 

   Syncope/Presyncope, %  (number) 4.01%  (12) NA - 

   Altered mental status, %  (number) 2.68%  (8) NA - 

   Evidence of pneumonia at thoracic imaging,& %  

(number) 

96.66%  (289) 95.52%  (384) 
0.4486 

   PaO2/FiO2 Ratio 248.9  (73.6) 355.6  (116.1) <.0001 

Laboratory Characteristics      

   WBC, mean  (±SD) 7.89  (4.35) 8.13  (4.32) 0.4637 

   Lymphocytes,* % of WBC, mean  (±SD) 14.75  (9.45) 13.28  (7.73) 0.0235 

   PLT,*  mean  (±SD) 187.000  (82.000) 225.000  (98.000) <.0001 

   CRP,*  mean  (±SD) 126.3  (88.58) 122.8  (95.7) 0.6260 

    LDH,*  median [25-75%IQR] 395 [305.75-530] 405 [304-524] 0.9897 

    AST,  median [25-75%IQR] 53[38-75] 50 [36-74.25] 0.1225 

    ALT,*  median [25-75%IQR] 32 [20-57] 41 [27.75-62] <.0001 

   INR,*  median [25-75%IQR] 1.01 [0.96-1.12] 1.04 [0.99-1.12] 0.0018 

   sCr,*  (mg/dL),  mean  (±SD) 1.26  (0.94) 1.53  (1.13) 0.0011 

Treatments     
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Abbreviations: HTN: Blood hypertension , BMI: body mass index; Cardiovascular Disease: chronic 

heart failure, myocardial infarction, atrial fibrillation; CKD: chronic kidney disease, stage III 

correspond to estimated glomerular filtration rate < 60 mL/min; COPD: Chronic obstructive 

pulmonary disease; WBC: White blood cells, PLT: platlets, CRP: C-reactive protein, LDH: lactic 

dehydrogenase, AST: aspartate aminotransferase; ALT: alanine aminotransferase; INR: international 

normalized ratio; sCr: serum Creatinine;; Antibiotics: oral Cefixime: 400 mg/day for ≥ 5 days; oral 

Azithromycin 500 mg/day for ≥ 5 days; oral Claritromicin 250 mg x 2/day for ≥ 5 days endovenoous 

Ceftriaxon 2 g/day for ≥ 5 days; endovenous piperacillina/tazobactam 4.5 mg x 3 or 4/day for ≥ 5 

da;oral or endovenous Levofloxacin 500 mg/day for ≥ 5 days. HCQ: hydroxychloroquine, 200 mg 12 

hours apart for the first 2 doses, then 200 mg/day for ≥ 5 days; Oral Prednisolone or equivalents: 

range 5-25 mg/day for  ≥ 5 days. NIV: Non-invasive ventilation; ICU: intesive care unit. SD=standard 

deviation. 

& Thoracic X-ray as a screening test, followed by CT-scan in doubtful cases 

*O2 therapy:  administered when saturation were ≤92% at resting in ambient air; required nasal 

canula or Venturi mask; NIV: required non-inviasive ventilation;  

**NIV: patients non-responsive to high-flow O2-therapy, requiring  

***ICU with intubation: required intensive care unit hospitalization with intubation.  

 

   Antibiotics, %  (number) 83.28 %  (249) 28.61%  (115) <.0001 

   HCQ, %  (number)  22.75 %  (68) 5.72%  (23) <.0001 

   Lopinavir/ritonavir, %  (number) 21.07 %  (63) 0%  (0) <.0001 

   Prednisone, %  (number) 34.45%  (103) 0.75%  (3) <.0001 

   Tocilizumab, %  (number) 4.01%  (12) 0%  (0) <.0001 

Outcomes 
   

   O2 therapy,* %  (number) 48.16%  (144) 35.57%  (143) 0.008 

   NIV,** %  (number) 13.04%  (39) 19.65%  (79) 0.0207 

   ICU with intubation,*** %  (number) 10.03%  (30) 10.70%  (43) 0.7762 

   Death, %  (number) 29.10%  (87) 39.55%  (159) 0.0041 
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Table 2. Mean F1-score and AUROC obtained in the cross-validation on the training set  (N = 

239) 

 

 F1-score  (mean ± 

SD) 

AUROC  (mean ± SD) 

Model 1: Decision Tree Numerical 0.60 ± 0.06 0.74 ± 0.11 

Model 2: Decision Tree Numerical and Categorical 0.68 ± 0.07 0.83 ± 0.07 

Model 3: GBOOST Numerical 0.66 ± 0.06 0.84 ± 0.05 

Model 4: GBOOST Numerical and Categorical 0.69 ± 0.04 0.88 ± 0.04 

Model 5: Random Forest Numerical 0.69 ± 0.15 0.86 ± 0.07 

Model 6: Random Forest Numerical and 

Categorical 

0.69 ± 0.05 0.87 ± 0.04 

Model 7: SVM Numerical 0.72 ± 0.05 0.87 ± 0.04 

Model 8: SVM Numerical and Categorical 0.68 ± 0.03 0.87 ± 0.03 

 

 

 

SUPPLEMENTARY TABLES 

 

Supplementary Table 1. Performance of the 8 models selected after cross-

validation: development cohort test set  (N = 60) 

Model 1: Decision Tree Numerical  

 Precision Recall F1-score Support 

Survival 0.83 0.35 0.49 43 

Death 0.33 0.82 0.47 17 

Accuracy   0.48 60 

Macro avg 0.58 0.59 0.48 60 

Weighted avg 0.69 0.48 0.49 60 

Model 2: Decision Tree Numerical and Categorical  

 Precision Recall F1-score Support 

Survival 0.69 0.63 0.76 43 

Death 0.50 0.94 0.65 17 

Accuracy   0.72 60 

Macro avg 0.73 0.78 0.71 60 

Weighted avg 0.83 0.72 0.73 60 

Model 3: GBOOST Numerical  
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 Precision Recall F1-score Support 

Survival 0.87 0.91 0.89 43 

Death 0.73 0.65 0.69 17 

Accuracy   0.83 60 

Macro avg 0.80 0.78 0.79 60 

Weighted avg 0.83 0.83 0.83 60 

Model 4: GBOOST Numerical and Categorical 

 Precision Recall F1-score Support 

Survival 0.83 0.79 0.81 43 

Death 0.53 0.59 0.56 17 

Accuracy   0.73 60 

Macro avg 0.68 0.69 0.68 60 

Weighted avg 0.74 0.73 0.74 60 

Model 5: Random Forest Numerical 

 Precision Recall F1-score Support 

Survival 0.84 0.86 0.85 43 

Death 0.62 0.59 0.61 17 

Accuracy   0.78 60 

Macro avg 0.73 0.72 0.73 60 

Weighted avg 0.78 0.78 0.78 60 

Model 6: Random Forest Numerical and Categorical 

 Precision Recall F1-score Support 

Survival 0.93 0.65 0.77 43 

Death 0.50 0.88 0.64 17 

Accuracy   0.72 60 

Macro avg 0.72 0.77 0.70 60 

Weighted avg 0.81 0.72 0.73 60 

Model 7: SVM Numerical  

 Precision Recall F1-score Support 

Survival 0.89 0.79 0.84 43 

Death 0.59 0.76 0.67 17 

Accuracy   0.78 60 

Macro avg 0.74 0.78 0.75 60 

Weighted avg 0.81 0.78 0.79 60 

Model 8: SVM Numerical and Categorical 

 Precision Recall F1-score Support 

Survival 0.94 0.72 0.82 43 

Death 0.56 0.88 0.68 17 

Accuracy   0.77 60 

Macro avg 0.75 0.80 0.75 60 

Weighted avg 0.83 0.77 0.78 60 
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Supplementary Table 2. Performance of the 8 models selected after cross-

validation: external validation dataset  (N = 402) 

Model 1: Decision Tree Numerical  

 Precision Recall F1-score Support 

Survival 0.70 0.71 0.71 243 

Death 0.55 0.53 0.54 159 

Accuracy   0.64 402 

Macro avg 0.58 0.59 0.48 402 

Weighted avg 0.69 0.48 0.49 402 

Model 2: Decision Tree Numerical and Categorical  

 Precision Recall F1-score Support 

Survival 0.85 0.56 0.67 243 

Death 0.56 0.65 0.57 159 

Accuracy   0.57 402 

Macro avg 0.70 0.70 0.67 402 

Weighted avg 0.73 0.67 0.67 402 

Model 3: GBOOST Numerical  

 Precision Recall F1-score Support 

Survival 0.66 0.95 0.78 243 

Death 0.76 0.26 0.39 159 

Accuracy   0.68 402 

Macro avg 0.71 0.61 0.59 402 

Weighted avg 0.70 0.78 0.63 402 

Model 4: GBOOST Numerical and Categorical 

 Precision Recall F1-score Support 

Survival 0.65 0.93 0.76 243 

Death 0.67 0.23 0.35 159 

Accuracy   0.65 402 

Macro avg 0.66 0.58 0.55 402 

Weighted avg 0.66 0.65 0.60 402 

Model 5: Random Forest Numerical 

 Precision Recall F1-score Support 

Survival 0.69 0.86 0.877 243 

Death 0.66 0.41 0.51 159 

Accuracy   0.68 402 

Macro avg 0.68 0.64 0.64 402 

Weighted avg 0.68 0.68 0.66 402 

Model 6: Random Forest Numerical and Categorical 

 Precision Recall F1-score Support 

Survival 0.74 0.80 0.77 243 

Death 0.66 0.58 0.62 159 
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Accuracy   0.71 402 

Macro avg 0.70 0.69 0.69 402 

Weighted avg 0.71 0.71 0.71 402 

Model 7: SVM Numerical  

 Precision Recall F1-score Support 

Survival 0.73 0.81 0.77 243 

Death 0.65 0.55 0.60 159 

Accuracy   0.71 402 

Macro avg 0.69 0.68 0.68 402 

Weighted avg 0.70 0.71 0.70 402 

Model 8: SVM Numerical and Categorical 

 Precision Recall F1-score Support 

Survival 0.81 0.70 0.75 243 

Death 0.62 0.74 0.68 159 

Accuracy   0,72 402 

Macro avg 0.71 0.72 0.71 402 

Weighted avg 0.73 0.72 0.72 402 

 

 

 

Supplementary Table 3. Optimal hyperparameters 

for the SVM classifier  (Model 8) 

  

Hyperparameters value 

C 10 

class_weight  {1:4} 

gamma auto 

kernel linear 
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HIGHLIGHTS 

- Models for early prediction of COVID-19 mortality relies usually on the presence of preexisting 

comorbidities, and are rarely reproducible  

- In two independent hospital populations, we showed that routinely measured biomarkers relative to the 

immune response and cellular damage better contribute to the prediction of the prognosis of patients with 

COVID-19, rather than the preexisting comorbidities  

- The features that had the greatest impact on the model’s prediction were age, LDH, platelets count, and % 

of lymphocytes, while creatinine, C-reactive protein and liver biomarkers contributed less constantly to 

mortality prediction  
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